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Abstract
A theorem about asymptotic estimation of multiple integrals of a special type
is proved for the case when the integrand peaks at the integration domain
boundary, but not at a point of extremum. Using this theorem, the asymptotic
expansion of the electromagnetic deuteron form factors at high momentum
transfers is obtained in the framework of a two-nucleon model in both the
nonrelativistic and relativistic impulse approximations. It is found that the
relativistic effects slow down the decrease of deuteron form factors and result
in agreement between the relativistic asymptotics and experimental data at high
momentum transfers.

PACS numbers: 11.10.Jj, 13.40.Gp, 13.75.Cs

1. Introduction

Recent advances in experimental investigations of a hadron structure arouse the interest in
the theoretical study of the hadron electromagnetic form factors at high momentum transfers
(see, e.g., [1] and references therein). In this connection the JLab program of investigations
on elastic electron–deuteron scattering experiments at Q2 � 10 (GeV c−1)2 (Q2 = −q2, q is
the transferred momentum) [2] attracts considerable attention. There exists a hope that these
JLab experiments will help to determine the limits of application for the two-nucleon model
and to clarify the interplay between nucleon–nucleon and quark approaches to the deuteron.

Using the asymptotic expansion presented in this paper we show [3] that the momentum
transfer region in the JLab experiments is asymptotical for the deuteron considered as a
nucleon–nucleon system. That is why the study of the electromagnetic deuteron form factors
is interesting at Q2 → ∞.
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The present work is devoted to the theoretical investigation of deuteron form factors
asymptotic behavior at high momentum transfer in the framework of the two-nucleon model.
The form factors asymptotics is studied in accordance with the following points.

(1) As a rule, the calculation of the form factors asymptotic behavior in the relativistic
approaches reduces to the asymptotic estimation of n-tuple integrals. In the relativistic
approach used in our work the deuteron form factors are expressed in terms of double
integrals where integrands peak at the integration domain boundary, and the corresponding
point is not a point of extremum. In this connection the theorem defining asymptotic
expansion of n-tuple integrals with such integrands is proven in our paper.

(2) In general, high momentum transfers require relativistic consideration. However we begin
the consideration of the asymptotic estimation of electromagnetic deuteron form factors
with the nonrelativistic case and the nonrelativistic impulse approximation at Q2 → ∞.
This is due to the facts that, first, the nonrelativistic calculation is less complicated and,
second, this calculation is important for the establishment of the role of the relativistic
effects.

(3) The asymptotic expansion of the relativistic deuteron form factors is calculated in the
relativistic invariant impulse approximation in a variant of instant form of Poincaré-
invariant quantum mechanics (PIQM) developed in our papers previously [4–8]. The
relativistic calculations are performed by analogy with the nonrelativistic case mentioned
in paragraph 2. It is shown that relativistic effects essentially slow down the asymptotical
decrease of the form factors.

(4) It is found that relativistic asymptotics obtained in the framework of the two-nucleon
model coincides with the experimental data.

This paper is organized as follows. Section 2 is devoted to the proof of a central result
for this paper, a theorem defining the asymptotics of multiple integrals of a special type. In
section 3, a brief review of the formulae for the deuteron form factors in the nonrelativistic and
relativistic invariant impulse approximations is given. The deuteron form factors asymptotics
is calculated in the nonrelativistic and relativistic impulse approximations with the help of
the proven theorem in section 4. In section 5, asymptotics of the form factors is obtained for
the deuteron wavefunctions in the conventional representation as a discrete superposition of
Yukawa-type terms [9]. Section 6 contains the conclusions of this paper.

2. Theorem on the asymptotic expansion of some multiple integrals in the case when the
maximal value of the integrand belongs to a region’s boundary

In the following we will consider integrals of the kind:

F(λ) =
∫

�

f (λ, x) eS(λ,x) dx, (1)

where � is a domain in Rn, x = (x1, . . . , xn), λ is a large positive parameter. We will
use the following definitions: ∂� is a boundary of the domain �, [�] = � ∪ ∂�, the
boundary ∂� ∈ C∞ if in the vicinity of any point x0 ∈ ∂� it can be specified by equation
xj = ϕ(x ′), x ′ ∈ U ′, x ′ = (x1, . . . , xj−1, xj+1, . . . , xn), U

′ is a neighborhood of a point x
′0,

and the function ϕ(x ′) ∈ C∞ in U ′.
We will consider function S(λ, x), which has the maximal value at the point x0. Note

that we consider the function S with more general dependence on a large positive parameter
λ as compared to classical books (see, e.g., [10]), where authors consider a product λS(x)

usually. For functions under consideration S(λ, x) there are asymptotic estimations in some
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particular cases only [11]. We stress that the difference S(λ, x0) − S(λ, x) increases with
increasing parameter λ. This means that at λ → ∞ the vicinity of the point x0 makes the
main contribution to the asymptotics of integrals (1). This qualitative statement we formulate
as a lemma.

Lemma. Let S(λ, x) be a smooth function in [�], f (λ, x) be a continuous function in [�],
and M(λ) ∈ C1,

M(λ) = sup
x∈[�]

S(λ, x), (2)

at some λ0 > 0 the integral (1) be absolutely convergent:∫
�

|f (λ0, x)| eS(λ0,x) dx < ∞, (3)

and the following conditions be fulfilled at λ � λ0:

∂S(λ, x)

∂λ
� dM(λ)

dλ
, (4)

|f (λ, x)| � C1|f (λ0, x)|. (5)

Then at λ � λ0 the following estimation is valid:

|F(λ)| � C2 eM(λ). (6)

Proof. At λ � λ0 the following estimations are true:

|F(λ)| � eM(λ)

∫
�

eS(λ0,x)−M(λ0) eS(λ,x)−S(λ0,x)−M(λ)+M(λ0)|f (λ, x)| dx

� eM(λ)−M(λ0)

∫
�

eS(λ0,x)+S(λ,x)−S(λ0,x)−M(λ)+M(λ0)|f (λ, x)| dx. (7)

From conditions (4), (5) we obtain the inequality

|F(λ)| � C1 eM(λ)−M(λ0)

∫
�

eS(λ0,x)|f (λ0, x)| dx � C2 eM(λ). (8)

Thus the statement (6) of the lemma is proven. �

Later we will consider function S(λ, x) described in the lemma which has the maximal
value at the point x0 ∈ ∂�, and S(λ, x), ∂� ∈ C∞ in the vicinity of x0. This point is not the
point of extremum, which means the validity of the following conditions,

∂S(λ, x0)

∂n
�= 0, (9)

and the matrix of coefficients B,∥∥∥∥∂2S(λ, x0)

∂ξi∂ξj

∥∥∥∥
n−1

i,j=1

= B(λ), (10)

gives the determined negative quadratic form. In equations (9), (10) ∂/∂n specifies the internal
normal derivative �n to the ∂�, and ξ1, . . . , ξn−1 is an orthonormal basis in the tangential to the
∂� plane T ∂�x0 at the x0 point.

For convenience let us choose in the vicinity of point x0 a frame y = (y1, . . . , yn), so
that x0 is the origin of coordinate and the internal normal to ∂� coincides with the last basis
vector of the new coordinate system. We denote functions f, S in these coordinates as f ∗, S∗,

3
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and U ∗ is an image of U (that is an image of a half-vicinity of the point x0). The equation for
∂U ∗ in the vicinity of the point y = 0 can be written in the following way:

yn = ϕ(y ′), y ′ ∈ U ′, y ′ = (y1, . . . , yn−1), (11)

with U ′ being a vicinity of the point y ′ = 0, ϕ(y ′) ∈ C∞(U ′), and at y ′ → 0, ϕ(y ′) = O(|y ′|2).

Theorem. Let the following conditions be fulfilled:

1◦. f, S ∈ C([�]).
2◦. S(λ, x0) is a maximal value of function S(λ, x), x0 ∈ ∂�, and x0 is not a point of

extremum.
3◦. f, S, ∂� ∈ C∞ in the vicinity of the point x0.
4◦. The Taylor expansion of functions S∗ and f ∗ in the vicinity of point x0 satisfies the

following relations:

f ∗(λ, y ′, ϕ(y ′)) = f ∗(λ, 0, ϕ(0))[1 + o(1)], (12)

S∗(λ, y ′, ϕ(y ′)) − S∗(λ, 0, ϕ(0)) = 1
2 〈B(λ)y ′, y ′〉 + O(|y ′|3), (13)

the angle brackets denote bilinear form: 〈x, y〉 = x1y1 + x2y2 + · · · + xnyn.
Then at λ → ∞ the following asymptotic expansion is valid:

F(λ) ∼ exp[S(λ, x0)]
∞∑

k=0

∞∑
m=0

hkm(λ). (14)

The way of calculating coefficients hkm(λ) will be determined later.

Proof. Let us divide the integral (1) into two integrals. The integration domain of the first
one is the half-vicinity U of the point x0, and the integration domain of the second one is a
remainder of integration domain of the original integral. As we stressed above M(λ) (2) for
the second integral is significantly smaller as compared to the M(λ) for the first one at λ → ∞.
And it follows immediately from the proven lemma that the second integral is exponentially
small as compared to the first one which is proportional to exp[S(λ, x0)]. So we will estimate
asymptotically the first integral only.

In the expansion of the function S∗(λ, y ′, ϕ(y ′)) in line with the condition (13) linear
components are absent, because the point y ′ = 0 is a point of maximum of the function
S∗(λ, y ′, ϕ(y ′)) in the region U ′.

Let us choose U in accordance with inequalities ϕ(y ′) � yn � δ, δ > 0 at y ∈ U ∗. Then
we can represent the integral (1) within exponentially decreasing terms:

F(λ) =
∫

U∗
f ∗(λ, y ′, yn) exp[S∗(λ, y ′, yn)] dy. (15)

Let us rewrite integral (15) in the following way:

F(λ) =
∫

U ′
�(λ, y ′) dy ′, (16)

with

�(λ, y ′) =
∫ δ

ϕ(y ′)
exp[S∗(λ, y ′, yn)]f

∗(λ, y ′, yn) dyn. (17)
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The integral (17) is one-dimensional, and the function S∗(λ, y ′, yn) reaches maximal value
on the boundary yn = ϕ(y ′). An asymptotic expansion of this integral can be found through
integration by parts. After N + 1 integrations we obtain the sequence

�(λ, y ′) =
N∑

k=0

Mk

[
f ∗(λ, y ′, yn)

S∗′
(λ, y ′, yn)

]
exp[S∗(λ, y ′, yn)]|δϕ(y ′)

+
∫ δ

ϕ(y ′)
S∗′

(λ, y ′, yn)M
N+1

[
f ∗(λ, y ′, yn)

S∗′
(λ, y ′, yn)

]
exp[S∗(λ, y ′, yn)] dyn, (18)

with M0 being a unit operator and

Mk =
(

− 1

S∗′
(λ, y ′, yn)

d

dyn

)k

. (19)

The substitution of yn = ϕ(y ′) provides the main contribution to the asymptotics, the value of
yn = δ is exponentially small at λ → ∞ as compared with the previous. Further integration
under these conditions gives the following expansion for the function (17):

�(λ, y ′) ∼ − exp[S∗(λ, y ′, ϕ(y ′))]
∞∑

k=0

Mk

[
f ∗(λ, y ′, ϕ(y ′))
S∗′

(λ, y ′, ϕ(y ′))

]
. (20)

So

F(λ) ∼ −
∞∑

k=0

∫
U ′

exp[S∗(λ, y ′, ϕ(y ′))]Mk

[
f ∗(λ, y ′, ϕ(y ′))
S∗′

(λ, y ′, ϕ(y ′))

]
dy ′. (21)

The point y ′ = 0 is an internal point of maximum of the integrand in the expression (21).
Functions S∗(λ, y ′, ϕ(y ′)) and f ∗(λ, y ′, ϕ(y ′)) satisfy the conditions of lemma (4) and theorem
(12), (13), therefore we can apply some estimations. One can rewrite (21) as,

F(λ) exp[−S∗(λ, 0, ϕ(0))] ∼ −
∞∑

k=0

∫
U ′

Hk(λ, y ′) exp

[
−1

2
〈−B(λ)y ′, y ′〉

]
dy ′, (22)

where

Hk(λ, y ′) = Mk

[
f ∗(λ, y ′, ϕ(y ′))
S∗′

(λ, y ′, ϕ(y ′))

]

× exp

[
S∗(λ, y ′, ϕ(y ′)) − S∗(λ, 0, ϕ(0)) − 1

2
〈B(λ)y ′, y ′〉

]
. (23)

Let us transform identically the terms of series (22) using the Parseval equality
∫
g(x)h(x) dx =

(2π)−n
∫
g̃(ξ)h̃(ξ) dξ , where g̃(ξ), h̃(ξ) are Fourier transforms of g(x), h(x) respectively,

F(λ) exp[−S∗(λ, 0, ϕ(0))]

∼ −
∞∑

k=0

(2π)−
n−1

2 |det B(λ)|−1/2
∫

U ′
ξ

H̃ k(λ, ξ) exp

[
−1

2
〈−B(λ)−1ξ, ξ 〉

]
dξ

= −
∞∑

k=0

(2π)
n−1

2 |det B(λ)|−1/2
∞∑

m=0

(−1)m

2mm!

×
∫

U ′
Hk(λ, y ′)〈−B(λ)−1δ(m)(y ′), δ(m)(y ′)〉m dy ′

= −
∞∑

k=0

(2π)
n−1

2 |det B(λ)|−1/2
∞∑

m=0

(−1)m

2mm!
〈B(λ)−1∇,∇〉mHk(λ, y ′)|y ′=0 (24)

where H̃ k(λ, ξ) is a Fourier transform of Hk(λ, y ′), δ(y ′) is a Dirac delta function.
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So we can write the asymptotic series for the integral (15):

F(λ) ∼ eS∗(λ,0,0)

∞∑
k=0

∞∑
m=0

hkm(λ), (25)

hkm(λ) = (2π)
n−1

2 |det B(λ)|−1/2 (−1)m+1

2mm!
〈B(λ)−1∇,∇〉mHk(λ, y ′)|y ′=0. (26)

Thus the theorem is proven. �

The first asymptotic term in the x variable

F(λ) ∼ −(2π)
n−1

2 exp[S(λ, x0)]

(
∂S(λ, x0)

∂n

)−1

|det B(λ)|− 1
2 f (λ, x0), (27)

where �n,B(λ) are defined by conditions (9) and (10).

3. Electromagnetic deuteron form factors in the nonrelativistic and relativistic impulse
approximations

In the nonrelativistic impulse approximation known formulae for electromagnetic deuteron
form factors can be rewritten in the following way [12]:

GNR
C (Q2) =

∑
l,l′

∫
k2 dk k′2 dk′ul(k)g̃ll′

0C(k,Q2, k′)ul′(k
′),

GNR
Q (Q2) = 2M2

d

Q2

∑
l,l′

∫
k2 dk k′2 dk′ul(k)g̃ll′

0Q(k,Q2, k′)ul′(k
′),

GNR
M (Q2) = −Md

∑
l,l′

∫
k2 dk k′2 dk′ul(k)g̃ll′

0M(k,Q2, k′)ul′(k
′).

(28)

Here ul(k) are the deuteron wavefunctions in the momentum representation, l, l′ = 0, 2 are
orbital angular momenta, g̃ll′

0i (k,Q2, k′), i = C,Q,M are nonrelativistic free two-particle
charge, quadrupole and magnetic dipole form factors respectively, Md is the deuteron mass.
Formulae for g̃ll′

0i are given in [8].
Let us discuss briefly the possible types of the model, deuteron wavefunctions. There are

several classes of the deuteron wavefunctions: obtained with microscopic model Hamiltonians
of the NN–interaction in the nonrelativistic nuclear physics (for example, see [9]), deduced
from scattering amplitudes in the Bethe–Salpeter approach and its various quasipotential
reductions (see [13]), wavefunctions of the Poincaré-invariant quantum mechanics (as an
example see wavefunctions in the instant form of PIQM [4–8]), and also wavefunctions
calculated in the various statements of inverse scattering problems [14–16]. But independently
of the method any wavefunction can be represented as the following Laguerre polynomial
expansion [16]:

ul(k) =
∞∑

m=0

alm

√
2m!

	(m + l + 3/2)
r

l+ 3
2

0 klL
l+ 1

2
m

(
r2

0 k2
)

e− r2
0 k2

2 (29)

or in the coordinate representation,

ul(r) =
∞∑

m=0

(−1)malm

√
2m!

r0	(m + l + 3/2)

(
r

r0

)l+1

L
l+ 1

2
m

(
r2

r2
0

)
e
− r2

2r2
0 , (30)

6
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here L
l+1/2
m (x) are generalized Laguerre polynomials, 	(x) is an Euler gamma function, the

dimensional parameter r0 can be related to the deuteron matter radius (see section 5).
The wavefunction representation as a Laguerre polynomial expansion (29) is very useful

for the calculation of the asymptotic behavior of the form factors. However, one can
avoid such a representation and obtain the asymptotic expansion directly for the initial
wavefunction.

Generally, at a high transferred momentum it is necessary to take into account relativistic
corrections in the electromagnetic deuteron structure. In our paper the relativistic description
of the deuteron is constructed in the framework of the instant form of Poincaré-invariant
quantum mechanics (PIQM), developed by authors previously [4–8]. In this approach we
present the electromagnetic deuteron form factors by analogy with the nonrelativistic case
(28). The corresponding formulae in the relativistic impulse approximation were obtained in
our paper [6]:

GR
C(Q2) =

∑
l,l′

∫
d
√

s d
√

s ′ϕl(s)g
ll′
0C(s,Q2, s ′)ϕl′(s

′),

GR
Q(Q2) = 2M2

d

Q2

∑
l,l′

∫
d
√

s d
√

s ′ϕl(s)g
ll′
0Q(s,Q2, s ′)ϕl′(s

′),

GR
M(Q2) = −Md

∑
l,l′

∫
d
√

s d
√

s ′ϕl(s)g
ll′
0M(s,Q2, s ′)ϕl′(s

′),

(31)

where ϕl(s) are the deuteron wavefunctions in the sense of PIQM, gll′
0i ((s,Q

2, s ′), i = C,Q,M

are relativistic free two-particle charge, quadrupole and magnetic dipole form factors
respectively. Formulae for free form factors are given in [8].

So the deuteron wavefunctions in the sense of PIQM are solutions of eigenvalue problem
for a mass squared operator for the deuteron (see, e.g. [4]): M̂2

d |ψ〉 = M2
d |ψ〉. An eigenvalue

problem for this operator is coincident with the nonrelativistic Schrödinger equation within
a second order on deuteron binding energy ε2

d

/
(4M), the value of which is small (M is an

averaged nucleon mass). So the deuteron wavefunctions in the sense of PIQM differ from the
nonrelativistic wavefunctions by conditions of normalization only. In the relativistic case the
wavefunctions are normalized with relativistic density of states:

∑
l=0,2

∫ ∞

0
ϕ2

l (k)
dk

2
√

k2 + M2
= 1,

ϕl(k) = 4
√

skul(k), s = 4(k2 + M2).

(32)

The nonrelativistic formulae (28) can be obtained from relativistic ones (31) in the
nonrelativistic limit. This limiting procedure can be performed in the most natural way
in the instant form of PIQM. The reason is that in papers [4–8] we have constructed the
successful formalism of the instant form of PIQM. In the case of other forms of PIQM (point
and front forms) obtaining nonrelativistic limits is much more difficult.

For obtaining the asymptotic form factors’ behavior at high transferred momentum in the
nonrelativistic and relativistic cases it is necessary to estimate asymptotically double integrals
(28) and (31) at Q2 → ∞. Note that the integrands reach their maximum values at the
integration domain boundary, and these points are not points of extremum. In the previous
section the theorem defining asymptotics of n-tuple integrals of such kinds was proven.

7
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4. Asymptotic expansion of the deuteron form factors

We start the asymptotic expansion of the deuteron form factors from the nonrelativistic case. It
is caused by the simplicity of the nonrelativistic formulae, so the calculation of the asymptotics
is more clear. In what follows the relativistic calculation will be presented analogously to the
nonrelativistic one, although more cumbersomely. Moreover, the nonrelativistic calculation
is interesting because the nonrelativistic formulae for the form factors (28) are conventional,
which is why their correct asymptotic expansion has universal appeal. Let us emphasize also
that the relativistic expressions for form factors and, therefore, their asymptotic estimations
depend on the choice of the method of relativisation of the two-nucleon model. Nonrelativistic
calculation is also of interest because it helps to clarify the role of relativistic effects in the
electromagnetic structure of the deuteron at the asymptotical momentum transfers.

As we have seen in section 3, the deuteron form factors in the nonrelativistic impulse
approximation can be represented by double integrals (28). We will find its asymptotic
expansion using the theorem of section 2 and use as an example the asymptotics of the charge
form factor. We shall estimate only the l = l′ = 0 term in the sum (28) because the asymptotics
of the other terms of form factors (28) can be derived analogously.

Let us rewrite the corresponding l = l′ = 0 term of the charge form factor (28)
using (29):∫ (∑

m

a0m

√
2m!

	(m + 3/2)
r

3
2

0 L
1
2
m

(
r2

0 k2)) (∑
m

a0m

√
2m!

	(m + 3/2)
r

3
2

0 L
1
2
m

(
r2

0 k′2))

× g̃00
0C(k,Q2, k′) exp[S(k, k′)]k2 dk k′2 dk′. (33)

We have denoted in (33):

S(k, k′) = − r2
0

2
(k2 + k′2). (34)

The expression for g̃00
0C(k,Q2, k′) is commonly accepted (see, e.g., [8]):

g̃00
0C(k,Q2, k′) = 1

kk′Q
(
G

p

E(Q2) + Gn
E(Q2)

)

×
[
θ

(
k′ −

∣∣∣∣k − Q

2

∣∣∣∣
)

− θ

(
k′ − k − Q

2

)]
, (35)

G
p,n

E (Q2) are electric form factors of proton and neuteron respectively, θ(x) is a step function.
In the case under consideration the space dimension n = 2, (x1, x2) = (k, k′), λ = Q2 is

a large positive parameter. The integration domain is determined by θ -functions in (35) and
is shown in figure 1. The location of the point of maximal value of the function S can be
obtained by analysis of (34) and (35): (k0, k′0) = (

Q

4 , Q

4

)
.

Let us perform the transition to the new basis as we have described before. We perform
the shift of the origin of coordinates to the point of maximal value of the function S. Then
we rotate the obtained frame for the internal normal to the boundary in the new origin to be
coincident with the last basis vector of the new frame. This procedure is illustrated in figure 1.

In other words we perform the transition to the new variables in (33):

k = Q√
2
(t ′ + t) +

Q

4
, k′ = Q√

2
(t ′ − t) +

Q

4
. (36)

At this transformation function S(k, k′) gets dependent on large parameter Q2:

S∗(Q2, t, t ′) = −Q2r2
0

2

(
t2 + t ′2 +

t ′√
2

+
1

8

)
. (37)

8
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Figure 1. The integration domain, location of the point of maximal value and transition to the new
variables for the nonrelativistic case.

Functions S∗(Q2, t, t ′), g̃00
0C(k,Q2, k′), and the boundary of the integration domain satisfy

the conditions 1◦, 3◦, 4◦ of the theorem. The location of the point, which satisfies the
conditions (9), (10), can be obtained by a simple analysis of the function (34): (t0, t ′0) = (0, 0).
Let us show that this point satisfies condition 2◦ of the theorem.

It is obvious, that at the point of maximal value

∂S

∂n
= ∂S∗

∂t ′

∣∣∣∣
(t,t ′)=(0,0)

= − r2
0 Q2

2
√

2
�= 0. (38)

So condition (9) is satisfied.
Let us calculate now the B(λ) matrix from condition (10). In our case the tangent

to the domain of the integration boundary vector in the point of maximal value is �ξ =
(1/

√
2,−1/

√
2), i.e. the B(λ) matrix is a number:

∂2S

∂ξ 2
= ∂2S∗

∂t2

∣∣∣∣
(t,t ′)=(0,0)

= −r2
0 Q2 < 0. (39)

We note that B(λ) is negative-definite, i.e. the point (t0, t0′) = (0, 0) is really the point of
maximal value. So the point (0,0) satisfies condition 2◦ of the theorem.

So integral (33) satisfies the requirements of the theorem proven in section 2. Therefore
we can apply the asymptotic formula (14).

Calculating by analogy the other terms of the sum (28) we obtain asymptotic expansions
of deuteron form factors in the nonrelativistic impulse approximation:

GNR
i (Q2) ∼ Ai e− r2

0 Q2

16

∞∑
k=0

∞∑
m=0

hNR
km , (40)

hNR
km =

√
2π

2mm!

1

(Qr0)2k+2m+3

k∑
p=0

bkp(2
√

2)k+p+1 ∂2m

∂t2m
f

NR(k−p)

i (t,Q2, 0)

∣∣∣∣
t=0

, (41)

bk0 = 1, bk+1p = bkp − (k + p)bkp−1, (p < k), bkk = (−1)k(2k − 1)!!, (42)

9
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f NR
i (t,Q2, t ′) =

∑
l,l′=0,2

Q2k2k′2ũl(k)g̃ll′
0i (t,Q

2, t ′)ũl′(k
′), (43)

with k = k(t,Q2, t ′), k′ = k′(t,Q2, t ′), variables t, t ′ are denoted in (36), i = C,Q,M,

AC = 1, AQ = 2M2
d

/
Q2, AM = −Md ,

f
NR(m)
i (t,Q2, t ′) = ∂m

∂t ′m
f NR

i (t,Q2, t ′). (44)

ũl,l′ are defined by equalities (see (29), too):

u0(k) = ũ0(k) e− r2
0 k2

2 , u2(k) = ũ2(k) e− r2
0 k2

2 . (45)

Let us now perform the calculation of the relativistic asymptotics of deuteron form factors. To
estimate asymptotically integrals (31) we proceed analogously to the nonrelativistic case, i.e.
we use relativistic analogs of the corresponding nonrelativistic formulae (33)–(39). Now the
free relativistic charge form factor in (31) at l = l′ = 0 is given in [8]:

g00
0C(s,Q2, s ′) = R(s,Q2, s ′)Q2

[
(s + s ′ + Q2)

(
G

p

E(Q2) + Gn
E(Q2)

)
g00

CE

+
1

M
ξ(s,Q2, s ′)

(
G

p

M(Q2) + Gn
M(Q2)

)
g00

CM

]
, (46)

G
p,n

E,M(Q2) are electric and magnetic form factors of proton and neutron respectively,

g00
CE =

(
1

2
cos ω1 cos ω2 +

1

6
sin ω1 sin ω2

)
,

g00
CM =

(
1

2
cos ω1 sin ω2 − 1

6
sin ω1 cos ω2

)
,

(47)

R(s,Q2, s ′) = (s + s ′ + Q2)√
(s − 4M2)(s ′ − 4M2)

ϑ(s,Q2, s ′)

[λ(s,−Q2, s ′)]3/2

1√
1 + Q2/4M2

, (48)

ξ(s,Q2, s ′) =
√

ss ′Q2 − M2λ(s,−Q2, s ′), (49)

ω1 and ω2 are angles of the Wigner spin rotation,

ω1 = arctan
ξ(s,Q2, s ′)

M[(
√

s +
√

s ′)2 + Q2] +
√

ss ′(
√

s +
√

s ′)
,

ω2 = arctan
α(s, s ′)ξ(s,Q2, s ′)

M(s + s ′ + Q2)α(s, s ′) +
√

ss ′(4M2 + Q2)
,

(50)

where α(s, s ′) = 2M +
√

s +
√

s ′, ϑ(s,Q2, s ′) = θ(s ′ − s1) − θ(s ′ − s2), θ is a step function,
λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc),

s1,2 = 2M2 +
1

2M2
(2M2 + Q2)(s − 2M2) ∓ 1

2M2

√
Q2(Q2 + 4M2)s(s − 4M2). (51)

To obtain a relativistic asymptotic expansion we also perform transition to the new basis
(shift and rotation analogously to (36)). The function S and the boundary of the integration
domain differ from nonrelativistic ones, so it is necessary to perform a special analysis. In
other words, instead of a change of variables (36) we perform the following replacement:

s = Q2

√
2
(t ′ + t) + 2M2 + M

√
Q2 + 4M2,

s ′ = Q2

√
2
(t ′ − t) + 2M2 + M

√
Q2 + 4M2.

(52)

10
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At this transformation one could obtain the function S∗(Q2, t, t ′):

S∗(Q2, t, t ′) = −Q2r2
0

2

⎛
⎝ t ′

2
√

2
+

M

2Q

√
1 +

4M2

Q2
− M2

Q2

⎞
⎠ . (53)

The point of maximal value is (t0, t ′0) = (0, 0), and subject to boundary equation t ′ = t ′(t)
at this point

∂S

∂n
= ∂S∗

∂t ′

∣∣∣∣
(t,t ′)=(0,0)

= − r2
0 Q2

4
√

2
,

∂2S

∂ξ 2
= ∂2S∗

∂t2

∣∣∣∣
(t,t ′)=(0,0)

= − r2
0 Q3

8M
. (54)

Functions S∗(Q2, t, t ′), g00
0C(s,Q2, s ′), the point (t0, t ′0) = (0, 0) and the boundary of the

integration domain satisfy the conditions 1◦–4◦ of the theorem. Therefore we can apply the
asymptotic formula (14).

So we obtain asymptotic expansion of the relativistic deuteron form factors:

GR
i (Q2) ∼ Ai e− r2

0
2 ( M

2

√
Q2+4M2−M2)

∞∑
k=0

∞∑
m=0

hR
km (55)

hR
km = √

π

m/2+[(−1)m−1]/4∑
p=0

1

Q2k+3m−5p+ 7
2

22m+ 5
2 k−7p+ 9

2

r
2m+2k−2p+3
0 M3p−m− 1

2

C2m
4p

(4p)!

p!m!

× ∂2m−4p

∂t2m−4p
f

R(k)
i (t,Q2, ϕ(t))

∣∣∣∣
t=0

, (56)

f R
i (t,Q2, t ′) =

∑
l,l′=0,2

ũl(k)gll′
0i (t,Q

2, t ′)ũl′(k
′)Q4 (s/4 − M2)

1
2 (s ′/4 − M2)

1
2

4 4
√

ss ′ , (57)

f
R(m)
i (t,Q2, t ′) = ∂m

∂t ′m
f R

i (t,Q2, t ′). (58)

Functions k = k(s), k′ = k′(s ′) are specified in (32), s = s(t,Q2, t ′), s ′ = s ′(t,Q2, t ′),
variables t, t ′ are denoted in (52), C2m

4p are the binomial coefficients.
Expansions (40) and (55) are the asymptotic series in reciprocal powers of the parameter

Q with known coefficients. The asymptotic expansion of this type for the deuteron form
factors is obtained in this work for the first time.

One can see from formulae (40) and (55) that relativistic corrections change the behavior
of form factors at high momentum transfer. In particular, the exponential multiplier index is
Q2 in the nonrelativistic case, but in the relativistic case it is Q at Q2 → ∞. It seems to
be a general feature of our relativistic approach to the description of composite systems; in
particular, we have obtained the similar result in consideration of asymptotic behavior of the
pion form factor in the composite quark model [17].

5. Asymptotics of the form factors for the conventional wavefunctions representation

In this section we represent the obtained asymptotic expansions (40) and (55) in terms of
initial wavefunctions on the left-hand side of (29), (32). For this representation it is necessary
to replace functions ũl(k) by functions ul(k) in (40) and (55) using (32), (45). Keeping the
leading term on 1/Q in the asymptotic expansions (40) and (55) one can obtain the following
asymptotic formulae in terms of functions ul(k) and ϕl(s) from (29), (32):

11
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GNR
i (Q2) ∼ Ai

4
√

π

r3
0 Q

∑
l,l′=0,2

k2k′2ul(k)g̃ll′
0i (t,Q

2, t ′)ul′(k
′)

∣∣∣∣∣
t=0
t ′=0

(59)

GR
i (Q2) ∼ Ai

16
√

2πMQ

r3
0

(s/4 − M2)
1
2 (s ′/4 − M2)

1
2

4 4
√

ss ′
∑

l,l′=0,2

ul(k)gll′
0i (t,Q

2, t ′)ul′(k
′)

∣∣∣∣∣
t=0
t ′=0

.

(60)

Let us note that a similar asymptotic representation can be obtained for any finite number of
terms in the asymptotic expansions (40), (55).

In the modern calculations the deuteron wavefunctions are usually represented as a discrete
superposition of Yukawa-type terms (see, e.g., [9]):

u0(k) =
√

2

π

∑
j

Cj(
k2 + m2

j

) , u2(k) =
√

2

π

∑
j

Dj(
k2 + m2

j

) , (61)

or in the coordinate representation,

u0(r) =
∑

j

Cj exp(−mjr),

u2(r) =
∑

j

Dj exp(−mjr)

[
1 +

3

mjr
+

3

(mj r)2

]
,

mj = α + m0(j − 1), α =
√

M |εd |.

(62)

Coefficients Cj ,Dj , maximal value of the index j and m0 are determined by the best fit of the
corresponding solution of Schrödinger equation.

The deuteron wavefunctions analytical form (62) results in the right behavior of the
wavefunctions at large distances:

u0(r) ∼ exp(−αr), u2(r) ∼ exp(−αr)

(
1 +

3

(αr)
+

3

(αr)2

)
. (63)

The deuteron wavefunctions behavior at small distances:

u0(r) ∼ r, u2(r) ∼ r3, (64)

is provided by imposing the following conditions on coefficients Cj and Dj :∑
j

Cj = 0,
∑

j

Dj =
∑

j

Djm
2
j =

∑
j

Dj

m2
j

= 0. (65)

Let us substitute the wavefunctions (61) into (59) and (60), and then obtain the leading
asymptotic terms of the nonrelativistic deuteron form factors:

GNR
C ∼ 1

Q8

215

√
πr3

0

⎡
⎣∑

j

Cjm
2
j

⎤
⎦

2 (
G

p

E(Q2) + Gn
E(Q2)

)
, (66)

GNR
Q ∼ 3M2

d

1

Q12

2
41
2√

πr3
0

⎡
⎣∑

j

Cjm
2
j

⎤
⎦

⎡
⎣∑

j

Djm
4
j

⎤
⎦ (

G
p

E(Q2) + Gn
E(Q2)

)
, (67)

GNR
M ∼ 1

Q8

215Md√
πr3

0 M

⎡
⎣∑

j

Cjm
2
j

⎤
⎦

2 (
G

p

M(Q2) + Gn
M(Q2)

)
. (68)
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The dimensional parameter r0 can be found from the expression for the deuteron matter
radius in our deuteron model:

r2
m = 1

4

∫ ∞

0

(
u2

0(r) + u2
2(r)

)
r2 dr. (69)

One can substitute wavefunctions of the form (30) into this expression. So formula (69)
specifies an algebraic equation for r0. The solution of this equation can be found numerically.

It should be pointed out that the main terms of the expansion of charge and magnetic
form factors in (66)–(68) are determined by the S-state of deuteron only. The D-wave function
gives the contribution to the main term of the quadrupole from factor. Its faster decrease at
Q2 → ∞ in comparison to the other form factors is a consequence of the faster decrease of the
D-wave function at small distances in comparison to the S-wave (64). From the mathematical
point of view the type of leading terms in (66)–(68) is a consequence of conditions on the
coefficients (65). The modification of these conditions obviously results in change of the main
terms in (66)–(68). From these formulae it is also noted that the asymptotic expansions for
the deuteron form factors contain dependence on the asymptotics of nucleon form factors.

We emphasize that in the other deuteron asymptotics investigations only the power
dependence on the transferred momentum was calculated as a rule. In the present paper
we give a rigorous calculation of a multiplicative preasymptotic constant.

One can calculate the relativistic asymptotics of the form factors by analogy with the
nonrelativistic case. For this calculation we use formulae (32), (60), (65). As a result we
obtain

GR
C,M(Q2) ∼ Q3

2
11
2 M3

GNR
C,M(Q2), (70)

GR
Q(Q2) ∼ Q4

2
15
2 M4

GNR
Q (Q2). (71)

Note that the asymptotic expansions (66)–(68) and (70), (71) are obtained for the first time in
our work. It is interesting to compare the obtained asymptotic estimations (66)–(68), (70), (71)
with observable behavior of the deuteron characteristics. In the experiment at high momentum
transfer one measures a combination of electromagnetic form factors, for example, the structure
function A(Q2) = G2

C(Q2) + 8
9η2G2

Q(Q2) + 2
3ηG2

M(Q2), where η = Q2
/

4M2
d . This function

enters the differential cross section of the elastic ed scattering. The values of function A(Q2)

are known up to Q2 � 6 (GeV c−1)2. For comparison with the experimental data one needs
to specify asymptotics of the nucleon form factors. It is natural to choose for nucleon form
factors the asymptotic which is predicted by the quark model [1] G

p,n

M ∼ 1/Q4. Under these
conditions the power dependence on Q2 of the function A(Q2) in the relativistic impulse
approximation coincides with the experimentally observed one. The physical consequences
will be examined in detail in another paper.

6. Conclusion

A theorem defining asymptotics of multiple integrals of some special type is proven. With the
help of the theorem the asymptotic expansion of the deuteron electromagnetic form factors at
Q2 → ∞ is calculated for the first time. The expansion is represented as an asymptotic series
in inverse powers of momentum transfer. The asymptotics of the form factors is found in terms
of the conventional representation of the deuteron wave function as a discrete superposition
of Yukawa-type terms. The asymptotic behavior of the form factors is calculated in the

13
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nonrelativistic impulse approximation and in the relativistic invariant impulse approximation
proposed by the authors in the instant form of the Poincaré-invariant quantum mechanics
previously. It is established that relativistic corrections change the power dependence of
the form factors on the momentum transfer at Q2 → ∞ and slow down its decrease. It is
also found that relativistic effects result in the agreement of the theoretical asymptotics and
the experimentally observed behavior of the structure function A(Q2) at highest achieved
momentum transfers.
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